

Page 2

Structure of the Optics
python code and demo

BNL
Thursday 01 October 2015

Mark Glass

10/01/2015 l Mark Glass

OUTLINE

Page 3

• Why optics?

• Structure of the optics code

• Examples

• How to extend

• Hopefully many questions

WHY OPTICS?

Page 4

In the synchrotron world different codes for numerical
simulations are around.
They may use different physical approaches and may
simulate different phenomena.

While the real world set up is naturally the same, i.e. a
X-ray source and a beamline, the API and the interfaces of
the software are always different and can not be
interchanged.

The goal of optics is to define a uniform and exchangeable
description of the real world set up that is tailored to the
synchrotron world and is still flexible enough to allow
particularities for different algorithms and physical
approaches.

STRUCTURE OF THE CODE

Page 5

So how does it work?

Optics
(common part)

A common and interchangeable set of
classes for synchrotron sources and

beamline optics.
(models what you can really “see”,

blueprint)

STRUCTURE OF THE CODE

Page 6

Optics
(common part)

Beam
(electron beam, pencil beam)

Beamline
(positioning, optical elements[lens, mirror…])

Magnetic structures
(bending magnet, wiggler, undulator)

STRUCTURE OF THE CODE

Page 7

So how does it work?

Optics
(common part)

Code drivers
(concrete part)

Concrete implementations of
“translators” that drive software like

SRW and Shadow from these
common classes

STRUCTURE OF THE CODE

Page 8

Code drivers
 (concrete part)

STRUCTURE OF THE CODE

Page 9

But my physics is different from yours! How can I add “uncommon”
things???

Driver Settings
(customization)

Every optics object can be
“equipped” with driver specific

settings.
(i.e. a wavefront grid,…)

Optics
(common part)

Code drivers
(concrete part)

STRUCTURE OF THE CODE

Page 10

Driver Settings
(customization)

STRUCTURE OF THE CODE

Page 11

Software cores remain uncoupled

Driver Settings
(customization)

Optics
(common part)

Code drivers
(concrete part)

SRW

Shadow

NO SRW-Shadow coupling
NO SRW-Optics or Shadow-Optics coupling
Only Optics-SRW and Optics-Shadow coupling

STRUCTURE OF THE CODE

Page 12

Driver Settings
(customization)

Optics
(common part)

Code drivers
(concrete part)

Shared user interfaces
(Oasys, Radiasoft interface)

SRW

Shadow

STRUCTURE OF THE CODE

Page 13

Shared user interfaces
(Oasys, Radiasoft interface)

EXAMPLES: BENDING MAGNET INFRARED

Page 14

Shadow SRW

EXAMPLES: BENDING MAGNET X-RAY ESRF

Page 15

Shadow SRW

HOW TO EXTEND

Page 16

What needs to be done:
Implement more sources and beamline optic elements.

How to do it?

1) Write common optics classes: source and optical
elements (name, attributes, methods)

2) If necessary write a Settings class for a given software
(i.e. SRW or Shadow)

3) Enhance the drivers (i.e. SRW or Shadow)

SUMMARY

Page 17

• Interchangeable description of a beamline close to the
real world set up. (not bound to a specify program or task)

• Concrete code drivers (i.e. SRW and Shadow)

• Use custom driver settings to equip the beamline for
different codes simultaneously.

• For the future we need to implement more sources and
optical elements.

• Ideally this package can be used to calculate the same
beamline set up in different levels of approximations
(ray-tracing, wavefront, partial coherence) with a shared
GUI.

THANK YOU

Page 18

Thank you for your attention

	Slide Number 1
	
	OUTLINE
	WHY optics?
	Structure of the CODE
	Structure of the CODE
	Structure of the CODE
	Structure of the CODE
	Structure of the CODE
	Structure of the CODE
	Structure of the CODE
	Structure of the CODE
	Structure of the CODE
	Examples: BENDING MAGNET INFRARED
	Examples: BENDING MAGNET X-ray ESRF
	HOW TO EXTEND
	Summary
	Thank you

