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Our ultimate goal is to describe statistical properties 
(partial coherence) of synchrotron radiation along a 
beamline for beamline design purposes on desktop 
computers. 
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The mutual coherence function Γ(𝐫𝐫1, 𝐫𝐫2) describes second order 
correlation completely. 
 
From the mutual coherence function Γ(𝐫𝐫1, 𝐫𝐫2) the mean intensity can 
be deduced. 

The mutual coherence function Γ(𝐫𝐫1, 𝐫𝐫2)  
• can be measured with a double slit experiment (Young’s experiment) 
 
• is related to the Wigner function through a Fourier transform: 

𝐵𝐵 𝒓𝒓,𝜽𝜽 = �Γ 𝒓𝒓 +
𝒖𝒖
2 𝒓𝒓 −

𝒖𝒖
2 exp 𝑖𝑖𝑖𝑖𝜽𝜽𝜽𝜽  𝑑𝑑𝒖𝒖 
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Consider the free space formula for the wavefront propagation using 
Huygens-Fresnel propagator:  

A similar formula exists for the propagation of the mutual coherence function: 

Mind however, that the integral is 4d. 

𝐸𝐸′ 𝒓𝒓 = −𝑖𝑖
𝑘𝑘
2𝜋𝜋

�𝐸𝐸 𝒓𝒓′
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅 cos 𝛼𝛼 𝑑𝑑𝒓𝒓𝒓  

Γ′ 𝒓𝒓1, 𝒓𝒓2 =
𝑘𝑘
2𝜋𝜋

2

�Γ 𝒓𝒓1, 𝒓𝒓2
𝑒𝑒𝑖𝑖𝑖𝑖(𝑅𝑅2−𝑅𝑅1)

𝑅𝑅1𝑅𝑅2
cos 𝛼𝛼1 cos 𝛼𝛼2 𝑑𝑑𝒓𝒓𝟏𝟏′ 𝑑𝑑𝒓𝒓𝟐𝟐′  

𝑅𝑅(𝒓𝒓, 𝒓𝒓′) = 𝒓𝒓 − 𝒓𝒓′  
With: 

and inclination factor cos 𝛼𝛼 . 
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The brightness convolution theorem is an approximate way to calculate 
the Wigner function:  

The theorem assumes that: 
1. different electrons of the electron beam are statistically independent. 
2. The variation of the magnetic guide field across the electron beam 

dimension is negligible. 

We can obtain the mutual coherence function with a Fourier 
transformation: 

The electron phase space density can be described in terms of the general 6x6  
covariance matrix Σ: 

𝐵𝐵 𝒓𝒓,𝜽𝜽 = 𝑁𝑁𝑒𝑒 �𝐵𝐵0 𝒓𝒓 − 𝒓𝒓′,𝜽𝜽 − 𝜽𝜽′ 𝑓𝑓 𝒓𝒓′,𝜽𝜽′ 𝑑𝑑𝒓𝒓′𝑑𝑑𝜽𝜽′ 

𝑓𝑓 𝒓𝒓′,𝜽𝜽′ = 𝐶𝐶 ∙ exp −𝐱𝐱TΣ𝒙𝒙   𝒙𝒙 = (𝑥𝑥, 𝑥𝑥′,𝑦𝑦, 𝑦𝑦′, 𝛿𝛿, 𝑧𝑧) 

Γ 𝒓𝒓 +
𝒖𝒖
2 , 𝒓𝒓 −

𝒖𝒖
2 = �𝐵𝐵 𝒓𝒓,𝜽𝜽 exp −𝑖𝑖𝑖𝑖𝜽𝜽𝜽𝜽  𝑑𝑑𝒖𝒖 
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Calculate Γ(𝒓𝒓1, 𝒓𝒓2) 
(approximation: brightness convolution) 

Propagate Γ(𝒓𝒓1,𝒓𝒓2) along the beamline: 
Γ 𝒓𝒓1, 𝒓𝒓2 → Γ′(𝒓𝒓1, 𝒓𝒓2) 

Slow 4d integral for each optical element 
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For the application of the brightness convolution theorem we need a 
reference electric field 𝐸𝐸0. 

We calculate the reference electric field 𝐸𝐸0 with SRW. 

𝐵𝐵0 𝒓𝒓,𝜽𝜽 = �E0∗ 𝒓𝒓 +
𝒖𝒖
2

𝐸𝐸0 𝒓𝒓 −
𝒖𝒖
2

exp 𝑖𝑖𝑖𝑖𝜽𝜽𝜽𝜽  𝑑𝑑𝒖𝒖 
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One can show that the mutual coherence function can always 
be represented in coherent modes: 

The 𝜙𝜙𝑛𝑛 𝒓𝒓  are called coherent modes and they are orthogonal. 
The eigenvalues 𝛽𝛽𝑛𝑛 can be interpreted as mode intensities. 

Γ 𝐫𝐫1, 𝐫𝐫2 = �𝛽𝛽𝑛𝑛𝜙𝜙𝑛𝑛∗(𝒓𝒓1)𝜙𝜙𝑛𝑛(𝒓𝒓2)
𝑛𝑛

 

We perform this decomposition numerically. 
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Putting the decomposed form into the propagation formula we find: 

The modes are propagated like electric fields in normal wave optics.  

Γ 𝒓𝒓1, 𝒓𝒓2 =
𝑘𝑘
2𝜋𝜋

2

�𝚪𝚪 𝒓𝒓1, 𝒓𝒓2
𝑒𝑒𝑖𝑖𝑖𝑖(𝑅𝑅2−𝑅𝑅1)

𝑅𝑅1𝑅𝑅2
cos 𝛼𝛼1 cos 𝛼𝛼2 𝑑𝑑𝒓𝒓𝟏𝟏′ 𝑑𝑑𝒓𝒓𝟐𝟐′  

=
𝑘𝑘
2𝜋𝜋

2

��𝛽𝛽𝑛𝑛𝜙𝜙𝑛𝑛∗(𝒓𝒓1)𝜙𝜙𝑛𝑛(𝒓𝒓2)
𝑛𝑛

𝑒𝑒𝑖𝑖𝑖𝑖(𝑅𝑅2−𝑅𝑅1)

𝑅𝑅1𝑅𝑅2
cos 𝛼𝛼1 cos 𝛼𝛼2 𝑑𝑑𝒓𝒓𝟏𝟏′ 𝑑𝑑𝒓𝒓𝟐𝟐′  

=
𝑘𝑘
2𝜋𝜋

2

�𝛽𝛽𝑛𝑛 �𝜙𝜙𝑛𝑛∗(𝒓𝒓1) 
𝑒𝑒−𝑖𝑖𝑖𝑖𝑅𝑅1
𝑅𝑅1

cos 𝛼𝛼1 𝑑𝑑𝒓𝒓𝟏𝟏′ �𝜙𝜙𝑛𝑛(𝒓𝒓2)
𝑒𝑒𝑖𝑖𝑖𝑖𝑅𝑅2
𝑅𝑅2

cos 𝛼𝛼2 𝑑𝑑𝒓𝒓𝟐𝟐′ 
𝒏𝒏
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Γ 𝒓𝒓1, 𝒓𝒓2 =
𝑘𝑘
2𝜋𝜋

2

�𝛽𝛽𝑛𝑛 �𝜙𝜙𝑛𝑛∗(𝒓𝒓1) 
𝑒𝑒−𝑖𝑖𝑖𝑖𝑅𝑅1
𝑅𝑅1

cos 𝛼𝛼1 𝑑𝑑𝒓𝒓𝟏𝟏′ �𝜙𝜙𝑛𝑛(𝒓𝒓2)
𝑒𝑒𝑖𝑖𝑖𝑖𝑅𝑅2
𝑅𝑅2

cos 𝛼𝛼2 𝑑𝑑𝒓𝒓𝟐𝟐′ 
𝑵𝑵

𝒏𝒏

 

 

Assuming a small number of relevant modes we have a small number of 2d 
integrals per optical element opposed to a 4d integral per optical element. 

We want to use SRW for the mode propagation. 
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Calculate Γ(𝒓𝒓1, 𝒓𝒓2) 
(approximation: brightness convolution) 

Propagate Γ(𝒓𝒓1,𝒓𝒓2) along the beamline: 
Γ 𝒓𝒓1, 𝒓𝒓2 → Γ′(𝒓𝒓1, 𝒓𝒓2) 

N times 2d integrals for each op. element 

Perform coherent mode decomposition 
(principal value analysis gives N modes) 
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On an equidistant test 
grid with 60 points in x 
and 60 points in y 
direction  
on the interval I =
−10,10 2  with: 

𝜎𝜎𝑠𝑠𝑠𝑠 = 0.9 𝜎𝜎𝑠𝑠𝑠𝑠 = 1.5 
𝜎𝜎𝑔𝑔𝑔𝑔 = 1.0 𝜎𝜎𝑔𝑔𝑔𝑔 = 1.5 

n m L2 norm of difference 
0 0 2.64e-15 

0 1 8.36e-15 

1 0 8.58e-15 

0 2 9.54e-15 

1 1 1.17e-14 

2 0 5.73e-15 

0 3 1.28e-14 

1 2 1.28e-14 

The first 100 modes have a 𝐿𝐿2 norm error below 1e-9. 

To test our decomposition algorithm we use a Gaussian 
Schell model cross spectral density for which analytical 
solution exists.  
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0,0 0,1 

1,0 0,2 



NUMERICS: TESTCASE: GAUSSIAN SCHELL MODEL III 

Page 16 

1,1 2,0 

0,3 1,2 
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For a Gaussian reference electric field:  

𝐸𝐸0 𝒓𝒓 = 𝐴𝐴 ∙ exp −
𝑟𝑟𝟐𝟐

2𝜎𝜎2  

The mutual coherence function Γ can be calculated analytically. 

Tests of the implemented algorithm for such a test field against 
the analytical result have a difference in 𝐿𝐿2 norm smaller than 1e-
10. 
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Coherent modes using the SRW example 10 undulator radiation 
as reference electric field 𝐸𝐸0. 
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High memory demands: 
If the reference electric field 𝐸𝐸0 is given on a grid of size 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 
then memory requirement scale like 𝑛𝑛𝑥𝑥2 ∙ 𝑛𝑛𝑦𝑦2 . 

High CPU demands: 
The numerical determination of Γ is computational expensive.  
Diagonalization of big matrices is slow.  

We do not really know yet if our results are converged.  
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• Propagate modes. Understand how SRW saves the wavefront 
and how an “external” wavefront can be propagated (quadratic 
phase term?) 

• Do real tests. (for example: compare to SRW example 10) 
• Check if the variation of the magnetic guide field across the 

electron beam dimension is really negligible. 
• Incorporate energy spread. 

In the near future: 

• Try to make an approximate desktop PC algorithm.(memory 
reduction) 

• Alternatively the sets of modes could be saved and could be 
reused for every change in the beamline optics. 

In the future: 
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• Using the brightness convolution theorem we calculate the mutual 
coherence function numerically. (neglecting variation of the 
magnetic guide field across the electron beam) 

• We feed the convolution with a reference undulator electric field 
calculated with SRW. 

• We perform a coherent mode decomposition and keep only a limited 
number of modes. 

• We want to propagate the modes using a wavefront propagation 
algorithm (preferable SRW). 

 
• In the future we want to benchmark against SRW and verify that 

variation of the magnetic guide field across the electron beam can be 
neglected. 

• The memory consummation is high and scales with 𝑁𝑁4. We dream of 
reducing it to 𝑁𝑁3. In that case we would have a desktop problem. 
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Thank you for your attention 
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