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Introduction and Objectives 
Since 1990’s, gold nanostructures that interact strongly with oxide supports were reported 
to be extremely active for many redox reactions, such as CO oxidation [1]. Such unique 
catalytic properties were found to be strongly dependent on the local crystal and elec-
tronic structures of active Au centers, i. e. particle size and size-distribution, oxidation 
states, coordination number with surrounding ions, etc. X-ray diffraction (XRD) and X-
ray absorption spectroscopy (XAS) have been widely used as the structural detectors for 
the heterogeneous catalysts [2]. Therefore, operando XRD & XAFS (XANES and 
EXAFS) techniques are especially helpful on the studies of reaction mechanisms, i. e. re-
action pathways, and active sites. Here, we will focus on studies of active sites of gold-
ceria nanorods for the low-temperature CO oxidation reaction with the aids of operando 
XRD and XAS measurements. 

Results and Discussion  
The 1 at.% Au-CeO2 nanorods were prepared by the deposition-precipitation method re-
ported previously [3]. In-situ XRD patterns were collected during CO oxidation reaction 
(1%CO/4%O2/He) under a “steady-state” mode between -65 and 70 °C (15 °C/step). The 
fresh Au-CeO2 catalysts were pre-oxidized (20%O2/He, 300 °C) or pre-reduced 
(5%H2/He, 200 °C) before the catalytic tests. The pre-reduced Au-CeO2 sample showed 
higher CO conversion below room-temperature than the pre-oxidized one (Figure 1), al-
though their apparent activation energies between -35 and -5 °C were very close (13−15 
kJ/mol). To our surprise, the lattice constants of the CeO2 support for both pre-oxidized 
and pre-reduced conditions were unchanged (around 5.40 Å , see Figure 1) during the 
whole reactions, indicating that the creation of oxygen vacancies or Ce3+ ion may not be 
required to activate the gold catalysts. The operando XAFS measurements (Au L-III 
edge) were carried out under the same reaction conditions, but kept at room-temperature. 
The EXAFS fittings (not shown) determined that the ionic gold (Au-O, CN = 2.1±0.9) 
was the main phase in the pre-oxidized sample, while metallic gold (average particle size: 
1.3 nm) was dominant in the pre-reduced one. XANES data, together with the linear 
combination results inserted in Figure 2, display that the Au in pre-oxidized catalyst was 
gradually reduced even under the room-temperature reaction. This is also consisted with 
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the XRD results in Figure 1a, i. e. the activity was enhanced (400−600 min) after the 
cool-down and heat-up cycle. The Au oxidation states were kept in metallic form for the 
pre-reduced sample during the reaction. In summary, metallic gold is more active than the 
ionic gold in Au-CeO2 nanorods for the low-temperature oxygen-rich CO oxidation reac-
tion. 

  
Figure 1. CO conversion (blue line) and cell dimension of CeO2 (red line) as a function of 
reaction time for the Au-CeO2 nanorods: (a) Pre-oxidized; (b) Pre-reduced. 
 

  
Figure 2. In-situ XANES (Au L-III edge) spectra for the Au-CeO2 nanorods under CO 
oxidation conditions at room temperature: (a) Pre-oxidized; (b) Pre-reduced. 

Conclusions 
The operando XRD and XAFS results on g old-ceria nanorods confirmed that metallic 
(pre-reduced) Au is more active than ionic Au (pre-oxidized) for the low-temperature CO 
oxidation reaction, while the reduction of the CeO2 support is not necessary to activate 
the catalysts. The active sites could be well-dispersed gold atoms/clusters (< 1∼2 nm) sta-
bilized by the oxide matrix. 

References 
[1]  M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 1989, 115, 301. 
[2] X. Wang, J. A. Rodriguez, J. C. Hanson, M. Pérez, J. Evans, J. Chem. Phys. 2005, 123, 221101. 
[3] R. Si, M. Flytzani-Stephanopoulos, Angew. Chem. Int. Ed. 2008, 47, 2884.  


	Introduction and Objectives
	Since 1990’s, gold nanostructures that interact strongly with oxide supports were reported to be extremely active for many redox reactions, such as CO oxidation [1]. Such unique catalytic properties were found to be strongly dependent on the local cry...
	Results and Discussion
	Conclusions
	References


